Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Microlensing of the broad emission line region (BLR) in gravitationally lensed quasars produces line profile distortions that can be used to probe the BLR size, geometry, and kinematics. Based on single-epoch spectroscopic data, we analyzed the C iv line profile distortions due to microlensing in two quasars, SDSS J133907.13$+$131039.6 (J1339) and SDSS J113803.73$+$031457.7 (J1138), complementing previous studies of microlensing in the quasars Q2237$+$0305 and J1004$+$4112. J1339 shows a strong, asymmetric line profile deformation, while J1138 shows a more modest, symmetric deformation, confirming the rich diversity of microlensing-induced spectral line deformations. To probe the C iv BLR, we compared the observed line profile deformations to simulated ones. The simulations are based on three simple BLR models, a Keplerian disk (KD), an equatorial wind (EW), and a polar wind (PW), of various sizes, inclinations, and emissivities. These models were convolved with microlensing magnification maps specific to the microlensed quasar images, which produced a large number of distorted line profiles. The models that best reproduce the observed line profile deformations were then identified using a Bayesian probabilistic approach. We find that the line profile deformations can be reproduced with the simple BLR models under consideration, with no need for more complex geometries or kinematics. The models with disk geometries (KD and EW) are preferred, while the PW model is definitely less likely. In J1339, the EW model is favored, while the KD model is preferred in Q2237$+$0305, suggesting that various kinematical models can dominate the C iv BLR. For J1339, we find the C iv BLR half-light radii to be $r_ $ light-days and $r_ $ light-days from spectra obtained in 2014 and 2017, respectively. They do agree within uncertainties. For J1138, the amplitude of microlensing is smaller and more dependent on the macro-magnification factor. From spectra obtained in 2005 (single epoch), we find $r_ $ light-days and $r_ $ light-days for two extreme values of the macro-magnification factor. Combining these new measurements with those previously obtained for the quasars Q2237$+$0305 and J1004$+$4112, we show that the BLR radii estimated from microlensing do follow the C iv radius--luminosity relation obtained from reverberation mapping, although the microlensing radii seem to be systematically smaller, which could indicate either a selection bias or a real offset.
Microlensing of the broad emission line region (BLR) in gravitationally lensed quasars produces line profile distortions that can be used to probe the BLR size, geometry, and kinematics. Based on single-epoch spectroscopic data, we analyzed the C iv line profile distortions due to microlensing in two quasars, SDSS J133907.13$+$131039.6 (J1339) and SDSS J113803.73$+$031457.7 (J1138), complementing previous studies of microlensing in the quasars Q2237$+$0305 and J1004$+$4112. J1339 shows a strong, asymmetric line profile deformation, while J1138 shows a more modest, symmetric deformation, confirming the rich diversity of microlensing-induced spectral line deformations. To probe the C iv BLR, we compared the observed line profile deformations to simulated ones. The simulations are based on three simple BLR models, a Keplerian disk (KD), an equatorial wind (EW), and a polar wind (PW), of various sizes, inclinations, and emissivities. These models were convolved with microlensing magnification maps specific to the microlensed quasar images, which produced a large number of distorted line profiles. The models that best reproduce the observed line profile deformations were then identified using a Bayesian probabilistic approach. We find that the line profile deformations can be reproduced with the simple BLR models under consideration, with no need for more complex geometries or kinematics. The models with disk geometries (KD and EW) are preferred, while the PW model is definitely less likely. In J1339, the EW model is favored, while the KD model is preferred in Q2237$+$0305, suggesting that various kinematical models can dominate the C iv BLR. For J1339, we find the C iv BLR half-light radii to be $r_ $ light-days and $r_ $ light-days from spectra obtained in 2014 and 2017, respectively. They do agree within uncertainties. For J1138, the amplitude of microlensing is smaller and more dependent on the macro-magnification factor. From spectra obtained in 2005 (single epoch), we find $r_ $ light-days and $r_ $ light-days for two extreme values of the macro-magnification factor. Combining these new measurements with those previously obtained for the quasars Q2237$+$0305 and J1004$+$4112, we show that the BLR radii estimated from microlensing do follow the C iv radius--luminosity relation obtained from reverberation mapping, although the microlensing radii seem to be systematically smaller, which could indicate either a selection bias or a real offset.
Microlensing-induced distortions of broad emission line profiles observed in the spectra of gravitationally lensed quasars can be used to probe the size, geometry, and kinematics of the broad-line region (BLR). To this end, single-epoch Mg ii or Halpha line profile distortions observed in five gravitationally lensed quasars, J1131-1231, J1226-0006, J1355-2257, J1339+1310, and HE0435-1223, have been compared with simulated ones. The simulations are based on three BLR models, a Keplerian disk (KD), an equatorial wind (EW), and a polar wind (PW), with different sizes, inclinations, and emissivities. The models that best reproduce the observed line profile distortions were identified using a Bayesian probabilistic approach. We find that the wide variety of observed line profile distortions can be reproduced with microlensing-induced distortions of line profiles generated by our BLR models. For J1131, J1226, and HE0435, the most likely model for the Mg ii and Halpha BLRs is either KD or EW, depending on the orientation of the magnification map with respect to the BLR axis. This shows that the line profile distortions depend on the position and orientation of the isovelocity parts of the BLR with respect to the caustic network, and not only on their different effective sizes. For the Mg ii BLRs in J1355 and J1339, the EW model is preferred. For all objects, the PW model has a lower probability. As for the high-ionization C iv BLR, we conclude that disk geometries with kinematics dominated by either Keplerian rotation or equatorial outflow best reproduce the microlensing effects on the low-ionization Mg ii and Halpha emission line profiles. The half-light radii of the Mg ii and Halpha BLRs are measured in the range of 3 to 25 light-days. We also confirm that the size of the region emitting the low-ionization lines is larger than the region emitting the high-ionization lines, with a factor of four measured between the sizes of the Mg ii and C iv emitting regions in J1339. Unexpectedly, the microlensing BLR radii of the Mg ii and Halpha BLRs are found to be systematically below the radius-luminosity ($R -L$) relations derived from reverberation mapping, confirming that the intrinsic dispersion of the BLR radii with respect to the $R-L$ relations is large, but also revealing a selection bias that affects microlensing-based BLR size measurements. This bias arises from the fact that, if microlensing-induced line profile distortions are observed in a lensed quasar, the BLR radius should be comparable to the microlensing Einstein radius, which varies only weakly with typical lens and source redshifts.
The local (z = 0.0315) active galactic nucleus (AGN) Mrk 817 was monitored over more than 500 days with space-borne and ground-based instruments as part of a large international campaign, AGN STORM 2. Here, we present a comprehensive analysis of the broadband continuum variations using detailed modeling of the broad line region (BLR), several types of disk winds classified by their optical depth, and new numerical simulations. We find that diffuse continuum (DC) emission, with additional contributions from strong and broad emission lines, can explain the continuum lags observed in this source during high- and low-luminosity phases. Disk illumination by the variable X-ray corona contributes only a small fraction of the observed continuum lags. Our BLR models assume radiation-pressure-confined clouds distributed over a distance of 2–122 light days. We present calculated mean emissivity radii of many emission lines, and DC emission, and suggest a simple, transfer-function-dependent method that ties them to cross-correlation lag determinations. We do not find clear indications for large-optical-depth winds, but identify the signature of lower-column-density winds. In particular, we associate the shortest observed continuum lags with a combination of τ(1 Ryd) ≈ 2 wind and a partly shielded BLR. Even smaller optical depth winds may be associated with X-ray absorption features and with noticeable variations in the widths and lags of several high-ionization lines like He ii and C iv. Finally, we demonstrate the effect of torus dust emission on the observed lags in the i and z bands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.