Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to plastic and sediment bed properties, the flow regime and the river morphology. The physical controls governing the storage, remobilization and pathways of transfer in sand bed rivers remain unquantified. This means it is not currently possible to determine the risks posed by microplastic contamination within these globally significant river systems. Using controlled flume experiments we show that sand bed rivers can store up to 40% of their microplastic load within the sediment bed indicating that these environments can act as resilient sinks of microplastics. By linking bedform dynamics with microplastic transport characteristics we show that similarities exist between granular transport phenomena and the behavior, and hence predictability, of microplastic flux. Specifically, we demonstrate the inverse relationship between bedform celerity and microplastic retention within the bed can be used to predict microplastic flux. Further, we show that, in these environments, microplastic shape is more important than previously thought in controlling the fate of microplastics. Together, these findings are significant since they have important implications for the prediction and hence management of microplastic contamination in sand bed environments.
Microplastic contamination of river sediments has been found to be pervasive at the global scale and responsive to plastic and sediment bed properties, the flow regime and the river morphology. The physical controls governing the storage, remobilization and pathways of transfer in sand bed rivers remain unquantified. This means it is not currently possible to determine the risks posed by microplastic contamination within these globally significant river systems. Using controlled flume experiments we show that sand bed rivers can store up to 40% of their microplastic load within the sediment bed indicating that these environments can act as resilient sinks of microplastics. By linking bedform dynamics with microplastic transport characteristics we show that similarities exist between granular transport phenomena and the behavior, and hence predictability, of microplastic flux. Specifically, we demonstrate the inverse relationship between bedform celerity and microplastic retention within the bed can be used to predict microplastic flux. Further, we show that, in these environments, microplastic shape is more important than previously thought in controlling the fate of microplastics. Together, these findings are significant since they have important implications for the prediction and hence management of microplastic contamination in sand bed environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.