Air-to-air heat pumps are used in today’s ventilation systems increasingly often as they provide heating and cooling for buildings. The energy transformation modes of these units are subject to constant change due to the varying outdoor air state, including temperature and humidity. When choosing how to operate and control energy transformers, it is important to be able to adapt effectively to the changing outside air conditions. Nowadays, modern commercial heat pumps offer two levels of control flexibility: a compressor with a variable speed and an electronic expansion valve. This combination of control elements has boosted the seasonal energy efficiency of heat pumps. For a long time, cycle control possibilities have been dominated by electronic controls. The authors of this paper aim to present an additional element to the traditional heat pump controls, which provides a third level of control over the cycle. To achieve the objective, experimental investigations of a heat pump integrated into a ventilation unit have been carried out under real-life conditions. The experiments involved varying the operating modes of the unit by adjusting the compressor speed, the position of the expansion valve, and the volume of the system loop. The study examined the performance characteristics of the heat pump and found that the performance of a variable-volume heat pump is comparable to that of a conventionally operated typical constant-volume heat pump system. In addition, the study found that by adding a third level of volume control to the active heating circuit, in combination with conventional controls, the heat pump’s heat output range could be extended by 69.62%. The study determined the variation of the heat pump cycle in the p-h diagram with the variation of the loop volume. The benefits and drawbacks of a heat pump with a variable-volume loop are discussed in this study.