The Molten Salt Fast Reactor (MSFR) has garnered much interest for its inherent safety and sustainbility features. The MSFR can adopt a closed thorium fuel cycle for sustainable operation through the breeding of 233 U from 232 Th. The fuel composition changes significantly over the course of its lifespan. In this study, we investigated the steady state and transient behavior of the MSFR using Moltres, a coupled neutronics/thermal-hydraulics code developed within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. Three different fuel compositions, start-up, earlylife, and equilibrium, were examined for potentially dangerous core temperature excursions during a unprotected loss of heat sink (ULOHS) accident. The six-group and total neutron flux distributions showed good agreement with SERPENT and published MSFR results, while the temperature distribution and total power showed discrepancies which can be attributed to known sources of error. For the transient behavior under the ULOHS scenario, while the transition time towards the new steady state core temperature is also in good agreement with existing MSFR simulations by Fiorina et al., Moltres underestimated the temperature rise by a factor of ten, due to the same sources of error affecting the steady state results. While an MSFR loaded with start-up fuel composition operates at a higher temperature than with the other two fuel compositions, all three cases were shown to be inherently safe due to the strong negative temperature feedback.