2018
DOI: 10.25159/1998-8125/3791
|View full text |Cite
|
Sign up to set email alerts
|

Modelling and Forecasting Zimbabwe’s Tourist Arrivals Using Time Series Method: A Case Study of Victoria Falls Rainforest

Abstract: Modelling and forecasting of tourist arrivals at one of the Seven Natural Wonders of the World, the Victoria Falls Rainforest, is critical to the tourism industry and economy of Zimbabwe. The aim of this paper is to provide quantitative techniques that will help with accurate tourist arrivals forecasting, shedding light on seasonality and other patterns of tourist arrivals. A time series plot of the monthly tourist arrivals statistics from January 2006 to December 2017 availed by the Zimbabwe Tourism Authority… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
3
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 12 publications
(6 citation statements)
references
References 45 publications
1
3
0
2
Order By: Relevance
“…Dimana tujuan utamanya adalah selain bekerja dan lamanya kunjungan kurang dari satu tahun (BPS, 2018) (Kumar & Sharma, 2016). Hasil penelitian lainnya tentang peramalan kedatangan wisatawan di Zimbabwe juga menunjukkan bahwa metode SARIMA merupakan model yang baik dibanding model lainnya (Makoni & Chikobvu, 2018). (ARIMA) yang memiliki pola musiman (Box et al, 2016).…”
Section: Literatur Reviewunclassified
“…Dimana tujuan utamanya adalah selain bekerja dan lamanya kunjungan kurang dari satu tahun (BPS, 2018) (Kumar & Sharma, 2016). Hasil penelitian lainnya tentang peramalan kedatangan wisatawan di Zimbabwe juga menunjukkan bahwa metode SARIMA merupakan model yang baik dibanding model lainnya (Makoni & Chikobvu, 2018). (ARIMA) yang memiliki pola musiman (Box et al, 2016).…”
Section: Literatur Reviewunclassified
“…The current paper employ the hierarchical forecasting technique, Quantile Regression Averaging (QRA) and PIs which capture tourism dynamics and quantify the uncertainities in future values due to parameter estimation unlike the hierarchical forecasting model developed by [29] which only captures tourism seasonality. QRA PIs provide supplementary information useful for effective marketing strategies and decision-making ( [30]; [8]).…”
Section: Literature Reviewmentioning
confidence: 99%
“…The simulation study shows that the method performs well compared to the top-down approach and the bottom-up method, the proposed method demonstrates by forecasting Australian tourism demand where the data are disaggregated by the purpose of travel and geographical region. In [ 3 ], Makoni and Chikobvu presented a paper that aims to model and forecast the Victoria Falls Rainforest tourism demand using hierarchical forecasting methods, the top-down, bottom-up, and optimal combination approaches are adopted. The exponential smoothing techniques (EST) and the autoregressive integrated moving average (ARIMA) methods are the forecasting methods considered.…”
Section: Introductionmentioning
confidence: 99%