Finansal varlık fiyatlarının geleceğinin tahmin edilmesi literatür ve uygulamada uzun zamandır ilgi çeken bir konudur. Son yıllarda, borsaya kote şirketlerin hisse senetlerinin fiyat hareketleri öngörme ve geleceğe dönük değerlerini tahmin etme hedefi için yapay zeka algoritmalarının başarılı yöntemler sundukları farklı akademik çalışmalarca ortaya konulmuştur. Belirtilen akademik çalışmaların büyük çoğunluğu yurt dışında bulunan piyasalarda yapılmıştır.Bu durumun geçerliliğini BIST 30 endeksi hisselerinde test etmek için bu çalışmada yedi farklı yapay zeka algoritması programlanmış, 30 hissenin 2014-2016 yılları günlük kapanış fiyatı verileri ile algoritmalar eğitilmiş ve bir firma için üretilen kapanış değerleri tahminleri gerçekleşen değerlerle kıyaslanmıştır. Veri seti için 02/01/2014 ve 30/12/2016 tarihleri arasında işlem yapılan 755 iş günü kullanılmıştır. Kullanılan öğrenme sürelerinin performans üzerindeki etkilerini görmek için öğrenme/tahmin oranları %80/20, %90/10, %99/1 olarak belirlenen üç farklı deney yapılmıştır. Çalışmanın sonucunda doğrusal regresyon temelli algoritmaların BIST30 hisse senedi fiyat hareket yönünü tahmin etmede, nöral ağ ve Poisson regresyonu yöntemlerinin ise kapanış fiyatı değerini tahmin etmede etkili oldukları görülmüştür.