. (2006) 'Learning inexpensive parametric design models using an augmented genetic programming technique.', Articial intelligence for engineering design, analysis and manufacturing., 20 (1). pp. 1-18. Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractPrevious applications of genetic programming~GP! have been restricted to searching for algebraic approximations mapping the design parameters~e.g., geometrical parameters! to a single design objective~e.g., weight!. In addition, these algebraic expressions tend to be highly complex. By adding a simple extension to the GP technique, a powerful design data analysis tool is developed. This paper significantly extends the analysis capabilities of GP by searching for multiple simple models within a single population by splitting the population into multiple islands according to the design variables used by individual members. Where members from different islands "cooperate," simple design models can be extracted from this cooperation. This relatively simple extension to GP is shown to have powerful implications to extracting design models that can be readily interpreted and exploited by human designers. The full analysis method, GP heuristics extraction method, is described and illustrated by means of a design case study.