2006
DOI: 10.1016/j.fishres.2006.07.002
|View full text |Cite
|
Sign up to set email alerts
|

Modelling fish growth: Model selection, multi-model inference and model selection uncertainty

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

1
285
0
34

Year Published

2012
2012
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 277 publications
(320 citation statements)
references
References 18 publications
1
285
0
34
Order By: Relevance
“…Multimodel approaches for describing growth can help reduce model misspecification and can help identify the most appropriate length-at-age model to use for a particular species (Katsanevakis, 2006). Each of the 3 models used were reparameterized versions of commonly used length-at-age models, reformulated to fit the observed change in length information over the time that tagged fish were at large.…”
Section: Growthmentioning
confidence: 99%
“…Multimodel approaches for describing growth can help reduce model misspecification and can help identify the most appropriate length-at-age model to use for a particular species (Katsanevakis, 2006). Each of the 3 models used were reparameterized versions of commonly used length-at-age models, reformulated to fit the observed change in length information over the time that tagged fish were at large.…”
Section: Growthmentioning
confidence: 99%
“…En este estudio, en su lugar se utilizó como criterio la máxima verosimilitud, encontrando que el uso de ésta representa una mejor solución para estimar adecuadamente los parámetros de los modelos de crecimiento individual tal como lo propuso Katsanevakis (2006) para otros modelos, ya en general la máxima verosimilitud es una prueba más robusta.…”
Section: Discussionunclassified
“…La selección de modelos basado en la teoría de la información ha sido recomendado como una alternativa mejor y más robusta que los enfoques tradicionales (Katsanevakis 2006, Cerdenares-Ladrón de Guevara et al 2011. Las ventajas de utilizar el AIC son que los modelos pueden ordenarse jerárquicamente según su ajuste a los datos, y la obtención de su parámetro promedio.…”
Section: Discussionunclassified
See 1 more Smart Citation
“…At-term pups were included in the VIMS1983 data set to account for a lack of neonates within that sample set. Katsanevakis (2006) and Thorson and Simpfendorfer (2009) suggested using multimodel inference to cope with issues of gear selectivity in order to derive more accurate estimates of growth parameters. However, given AIC c values close to or greater than 10, model averaging resulted in parameter estimates that were almost identical to the best-fit model estimates for all data sets.…”
Section: Discussionmentioning
confidence: 99%