2020
DOI: 10.48550/arxiv.2012.07580
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Modelling General Properties of Nouns by Selectively Averaging Contextualised Embeddings

Abstract: While the success of pre-trained language models has largely eliminated the need for high-quality static word vectors in many NLP applications, static word vectors continue to play an important role in tasks where word meaning needs to be modelled in the absence of linguistic context. In this paper, we explore how the contextualised embeddings predicted by BERT can be used to produce high-quality word vectors for such domains, in particular related to knowledge base completion, where our focus is on capturing … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 30 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?