This paper reports the second part of the study of an electric arc and its interaction with the anode material. First, a three-dimensional model is presented and validated in a natural symmetric configuration for which many experimental results exist. In the three-dimensional model, two situations are considered for the anode surface: the classical zero heat flux condition and the use of the anode model. In the second case, the specific properties of the anode material are taken into account and play a role in the current conservation between the plasma and the anode, and therefore, affect the arc behaviour near the electrode. The results for the two approaches are similar in two dimensions, but differences exist in real three-dimensional cases when external forces such as cross flow or magnetic field tend to bend the arc. Second, we present a comparison between the two methods in the case where the arc is deviated by an external magnetic field. For this comparison, we adopt a configuration used at Odeillo during the 1970s and compare the results obtained by our code with the experimental ones. We find that it is essential to consider the complete anode model if the arc deflection is to be predicted correctly. Once our developments are validated, the computational code is applied in a free-burning arc configuration, where the plasma column is deflected by an external cross flow.