In the incremental sheet forming simulation, finite element modelling typically was used to anticipate material behaviour, predict deformation forces, thickness reduction or to identify other information. Because the forming tool motions are difficult to be implemented in finite element method (FEM) software systems, and because of the large number of points that describe the tool path, in order to reduce data preparation time, this paper presents the implementation of a new software tool conceived by the authors in the process of the numerical simulation of incremental sheet forming. The software tool uses a CNC file in G-code format to reveal the interpolation point coordinates of the tool motions and the positioning time in a specific ANSYS format. Usually, a tool path for an incremental sheet forming process consists of thousands of interpolation points and is very difficult and time-consuming to implement manually into a FEM software system. The new software tool solves this issue, at least for ANSYS software, being swift and easy to use. The paper also presents how the software tool is integrated and validated in a case study of an incremental sheet forming process simulation concerning different part configurations.