The work is devoted to modeling the process of formation, development and propagation of cracks. Currently, there is a large number of physical and mechanical-mathematical models describing the process of destruction of various materials. In addition to the fracture criteria, it is also important to correctly take into account changes in the rheology of the fractured material, including the contact interaction between the surfaces of cracks and fragments. This paper proposes a numerical approach to solving the problems of contact interaction and brittle fracture of elastically deformable bodies. Crack bank interactions, including frictional forces and contact pressures, is modeled by the means of frame-type contact finite elements (CFE) using a stepwise analysis method. Various contact conditions – separation, clutch, friction-sliding, as well as rheological properties of crack surfaces and fragments – contact layer pliability, adhesion strength, etc. are modeled with the help of CFE. The proposed approach was used in the numerical modeling of bone damage under the penetrating action of a rigid indenter. The conducted numerical studies have shown a good correspondence of the calculated and experimental results, despite the substantial approximation of the used calculation schemes.