Two main damage mechanisms of laminates-matrix cracking and inter-ply delaminationare closely linked together (Joshi and Sun 1). This paper is focussed on interaction between matrix cracking and delamination failure mechanisms in CFRP crossply laminates under quasi-static tensile loading. In the first part of the work, a transverse crack is introduced in 90o layers of the cross-ply laminate [01/904/01], and the stresses and strains that arise due to tensile loading are analyzed. In the second part, the cohesive zone modelling approach where the constitutive behaviour of the cohesive elements is governed by traction-displacement relationship is employed to deal with the problem of delamination initiation from the matrix crack introduced in the 90o layers of the laminate specimen. Additionally, the effect of microstructural randomness, exhibited by CFRP laminates on the damage behaviour of these laminates is also accounted for in simulations. This effect is studied in numerical finite-element simulations by introducing stochastic cohesive zone elements. The proposed damage modelling effectively simulated the interaction between the matrix crack and delamination and the variations in the stresses, damage and crack lengths of the laminate specimen due to the microstructural randomness.