Purpose
The purpose of this paper is to review possibilities of implementing ceramic additive manufacturing (AM) into electronic device production, which can enable great new possibilities.
Design/methodology/approach
A short introduction into additive techniques is included, as well as primary characterization of structuring capabilities, dielectric performance and applicability in the electronic manufacturing process.
Findings
Ceramic stereolithography (SLA) is suitable for microchannel manufacturing, even using a relatively inexpensive system. This method is suitable for implementation into the electronic manufacturing process; however, a search for better materials is desired, especially for improved dielectric parameters, lowered sintering temperature and decreased porosity.
Practical implications
Relatively inexpensive ceramic SLA, which is now available, could make ceramic electronics, currently restricted to specific applications, more available.
Originality/value
Ceramic AM is in the beginning phase of implementation in electronic technology, and only a few reports are currently available, the most significant of which is mentioned in this paper.