2020
DOI: 10.1111/1365-2478.13006
|View full text |Cite
|
Sign up to set email alerts
|

Modelling of viscoacoustic wave propagation in transversely isotropic media using decoupled fractional Laplacians

Abstract: A new wave equation is derived for modelling viscoacoustic wave propagation in transversely isotropic media under acoustic transverse isotropy approximation. The formulas expressed by fractional Laplacian operators can well model the constant‐Q (i.e. frequency‐independent quality factor) attenuation, anisotropic attenuation, decoupled amplitude loss and velocity dispersion behaviours. The proposed viscoacoustic anisotropic equation can keep consistent velocity and attenuation anisotropy effects with that of qP… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
13
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 19 publications
(13 citation statements)
references
References 69 publications
0
13
0
Order By: Relevance
“…According to the acoustic approximation of transversely isotropy medium (Duveneck & Bakker, 2011), the relaxation matrix and quality factor matrix of viscoacoustic vertical transversely isotropic (VTI) medium can be expressed as (Hosten et al., 1987; Qiao et al., 2020) ψbadbreak=[]ψ11ψ11ψ13ψ11ψ11ψ13ψ13ψ13ψ33,$$\begin{equation}\rm{\psi} = \left[ { \def\eqcellsep{&}\begin{array}{@{}*{3}{c}@{}} {{\rm {\psi} }_{11}}&{{\rm{\psi} }_{11}}&{{\rm{\psi} }_{13}}\\ {{\rm{\psi} }_{11}}&{{\rm{\psi} }_{11}}&{{\rm{\psi} }_{13}}\\ {{\rm{\psi} }_{13}}&{{\rm{\psi} }_{13}}&{{\rm{\psi} }_{33}} \end{array} } \right],\end{equation}$$ boldQbadbreak=[]Q11Q11Q13Q11Q11Q13Q13Q13Q33,$$\begin{equation}\bf{Q} = \left[ { \def\eqcellsep{&}\begin{array}{@{}*{3}{c}@{}} {{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{13}}}\\ {{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{13}}}\\ {{{Q}}_{\textit{13}}}&{{{Q}}_{\textit{13}}}&{{{Q}}_{\textit{33}}} \end{array} } \right],\end{equation}$$where Q11=Qitalic331+εQ${Q}_{\textit{11}} = \frac{{{Q}_{\textit{33}}}}{{1 + {\varepsilon }_Q}}$, Q13=2Q33δQC33/C132+2${Q}_{\textit{13}} = \frac{{2{Q}_{\textit{33}}}}{{{\delta }_Q{C}_{33}/C_{13}^2 + 2}}$, …”
Section: Theorymentioning
confidence: 99%
See 2 more Smart Citations
“…According to the acoustic approximation of transversely isotropy medium (Duveneck & Bakker, 2011), the relaxation matrix and quality factor matrix of viscoacoustic vertical transversely isotropic (VTI) medium can be expressed as (Hosten et al., 1987; Qiao et al., 2020) ψbadbreak=[]ψ11ψ11ψ13ψ11ψ11ψ13ψ13ψ13ψ33,$$\begin{equation}\rm{\psi} = \left[ { \def\eqcellsep{&}\begin{array}{@{}*{3}{c}@{}} {{\rm {\psi} }_{11}}&{{\rm{\psi} }_{11}}&{{\rm{\psi} }_{13}}\\ {{\rm{\psi} }_{11}}&{{\rm{\psi} }_{11}}&{{\rm{\psi} }_{13}}\\ {{\rm{\psi} }_{13}}&{{\rm{\psi} }_{13}}&{{\rm{\psi} }_{33}} \end{array} } \right],\end{equation}$$ boldQbadbreak=[]Q11Q11Q13Q11Q11Q13Q13Q13Q33,$$\begin{equation}\bf{Q} = \left[ { \def\eqcellsep{&}\begin{array}{@{}*{3}{c}@{}} {{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{13}}}\\ {{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{11}}}&{{{Q}}_{\textit{13}}}\\ {{{Q}}_{\textit{13}}}&{{{Q}}_{\textit{13}}}&{{{Q}}_{\textit{33}}} \end{array} } \right],\end{equation}$$where Q11=Qitalic331+εQ${Q}_{\textit{11}} = \frac{{{Q}_{\textit{33}}}}{{1 + {\varepsilon }_Q}}$, Q13=2Q33δQC33/C132+2${Q}_{\textit{13}} = \frac{{2{Q}_{\textit{33}}}}{{{\delta }_Q{C}_{33}/C_{13}^2 + 2}}$, …”
Section: Theorymentioning
confidence: 99%
“…Here, we implement a numerical example of wavefield modelling in the homogeneous medium above, where the reference frequency is 150 Hz, and the source is in centre of the model, which is a Ricker wavelet with dominant frequency 25 Hz. First, we compare the qP wave equation (Equation ) and pseudo qP wave equation (Qiao et al., 2020, equation 24) in viscoacoustic VTI media. As the snapshots shown in Figure 2, the qSV wave interference in part (b) does not appear in part (a).…”
Section: Theorymentioning
confidence: 99%
See 1 more Smart Citation
“…For the case in which q = δ q = 0, it corresponds to the special case (Q 11 = Q 33 = Q 13 ) that P-wave attenuation is independent of propagation directions (i.e. isotropic attenuation) even for arbitrary velocity anisotropy (Qiao et al, 2020) and thus equation ( 14) reduces…”
Section: Viscoelastic and Viscoacoutic Wave Equationsmentioning
confidence: 99%
“…For the case in which εq=δq=0$\epsilon _q=\delta _{q}=0$, it corresponds to the special case (Q11=Q33=Q13$Q_{11}=Q_{33}=Q_{13}$) that P‐wave attenuation is independent of propagation directions (i.e. isotropic attenuation) even for arbitrary velocity anisotropy (Qiao et al ., 2020) and thus equation () reduces boldGbadbreak=[]001ρx0000001ρz00C11UxC13Uz0010C13UxC33Uz0001τfalse(11false)τσ(11)C11Rxτfalse(11false)τσ(11)C13Rz000true1τσfalse(11false)0τfalse(11false)…”
Section: Theorymentioning
confidence: 99%