The problems of non-equilibrium and nonlinear processes in the evaluation of reinforced concrete structural systems robustness potential in ultimate states are considered. The definition of concept of “robustness exposition” is given for a quantitative assessment of the robustness potential. A calculation model based on the generalization of the well-known classical relationship between the current relative deficit change rate of the reinforced concrete stress-strain state with respect to each fixed time value is proposed to describe in time non-equilibrium processes of structural materials force resistance depending on the mode and level of loading. On the basis of the linear creep theory, aging materials, an algorithm was developed to determine the measure of creep, corrosion-damaged concrete and reinforced concrete and to determine the parameter “robustness exposition” of a reinforced concrete statically indeterminate structural system, taking into account non-equilibrium and nonlinear processes of its deformation in time. An example of a single-span rigidly clamped reinforced concrete beam calculating the robustness potential from the position of a special limiting state criterion is considered.