2013
DOI: 10.12989/cac.2013.12.5.585
|View full text |Cite
|
Sign up to set email alerts
|

Modelling reinforced concrete beams under mixed shear-tension failure with different continuous FE approaches

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0

Year Published

2015
2015
2024
2024

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 12 publications
(8 citation statements)
references
References 30 publications
0
8
0
Order By: Relevance
“…A simple isotropic damage continuum model describes the material degradation with the aid of only a single scalar damage parameter D growing monotonically from zero (undamaged material) to one (completely damaged material) [3][4][5]30,39]. A damage variable D is associated with a degradation of the material due to the propagation and coalescence of micro-cracks and micro-voids.…”
Section: Constitutive Continuum Model For Concretementioning
confidence: 99%
See 2 more Smart Citations
“…A simple isotropic damage continuum model describes the material degradation with the aid of only a single scalar damage parameter D growing monotonically from zero (undamaged material) to one (completely damaged material) [3][4][5]30,39]. A damage variable D is associated with a degradation of the material due to the propagation and coalescence of micro-cracks and micro-voids.…”
Section: Constitutive Continuum Model For Concretementioning
confidence: 99%
“…The constitutive isotropic damage model for concrete requires the following 5 constants: E -the modulus of elasticity, t -the Poisson's ratio, j 0 -the initial value of the damage parameter (responsible for the strength) and a and b -the softening parameters. The model is suitable for tensile failure [30]. However, it cannot realistically describe irreversible deformations, volume changes and shear failure.…”
Section: Constitutive Continuum Model For Concretementioning
confidence: 99%
See 1 more Smart Citation
“…The elasto-plasticity model was defined within a standard plasticity theory. Standard Rankine criterion was used [6][7]. The yield function for 2D case was defined as:…”
Section: Elasto-plasticitymentioning
confidence: 99%
“…Within continuum mechanics, cracks can be described as a smeared (continuous), discrete (discontinuous) or by coupling these two approaches (Mazars et al [20], Marzec et al [18], Unger et al [26], Bobiński and Tejchman [5]). The first (smeared) approach defines a crack as region (band) with a certain width, while in the second formulation it is presented as a line (surface) with zero thickness and assumed displacement jump across.…”
Section: Introductionmentioning
confidence: 99%