This paper investigates an integrated pest management model with pulsed diffusion. As we all know, humans have been fighting against pests since they entered the age of farming. When pests are controlled, humans can achieve better harvests. We use the stroboscopic mapping of discrete dynamic system to obtain some important lemmas. Based on the lemmas, firstly, we give the conditions for the global asymptotic stability of the periodic solution of the pest eradication boundary; secondly, the conditions for the permanence of the investigated system are derived; thirdly, numerical simulations are used to verify our obtained theoretical results; finally, increased dispersal was found to have the opposite effect on integrated pest management. We conclude that a combination of impulsive diffusion, spraying pesticides, and releasing natural enemies can play a crucial role in integrated pest management.