Cattle faeces are considered the most important reservoir for human infection with Escherichia coli O157. We have previously described shedding of E. coli O157 in the faeces of naturally infected cattle cohorts. However, the data require further investigation to quantify the uncertainty and variability in the estimates previously presented. This paper proposes a method for analysing both the presence and the quantity of E. coli O157 in cattle faecal samples, using two isolation procedures, one of which enumerates E. coli O157. The combination of these two measurements, which are fundamentally different in nature and yet measuring a common outcome, has necessitated the development of a novel statistical model for ascertaining the contribution of the various components of variation (both natural and observation induced) and for judging the influence of explanatory variables. Most of the variation within the sampling hierarchy was attributable to multiple samples from the same animal. The contribution of laboratory-level variation was found to be low. After adjusting for fixed and random effects, short periods of increased intensity of shedding were identified in individual animals. We conclude that within-animal variation is greater than between animals over time, and studies aiming to elucidate the dynamics of shedding should focus resources, sampling more within than between animals. These findings have implications for the identification of persistent high shedders and for assessing their role in the epidemiology of E. coli O157 in cattle populations. The development of this non-standard statistical model may have many applications to other microbial count data.