Creep tests carried out on specimens of isotropic ice containing a monocrystalline inclusion allow us to observe some strain heterogeneities that develop during the deformation of polycrystalline ice. Different kinds of heterogeneities, some of them leading to strain localization, are observed and described, and mechanisms are proposed to explain how they arise. However, when the inclusion has a very regular shape with no geometric singularity (e.g. circular shape) and is embedded in a fine-grained isotropic matrix, the observations lead us to assume homogeneous deformation of the inclusion, with no strain localization except that associated with basal glide.