Polyamide fibres are known to be sensitive to water, and this has limited their marine applications. However, their low stiffness and high strength could be attractive for shallow water mooring line ropes, particularly for floating wind turbines. Such applications require the influence of water on mechanical behaviour to be fully understood, and this paper presents results describing how water affects static and creep response of polyamide 6 fibre yarns. First, the effect of water on fibre Tg is quantified, then tensile behaviour is examined. Finally, a model based on Schapery's non-linear creep analysis is identified for different humidity conditions. The results show that while moisture has a small effect on short-term tensile behaviour, long term response is strongly affected and this must be considered in any marine application.