The accurate representation of species distribution derived from sampled data is essential for management purposes and to underpin population modelling. Additionally, the prediction of species distribution for an expanded area, beyond the sampling area can reduce sampling costs. Here, several well-established and recently developed habitat modelling techniques are investigated in order to identify the most suitable approach to use with presenceabsence acoustic data. The fitting efficiency of the modelling techniques are initially tested on the training dataset while their predictive capacity is evaluated using a verification set. For the comparison among models, Receiver Operating Characteristics (ROC), Kappa statistics, correlation and confusion matrices are used. Boosted Regression Trees (BRT) and Associative Neural Networks (ASNN), which are both within the machine learning category, outperformed the other modelling approaches tested.