In this study, 'Hass' avocado samples were stored at different temperatures to determine changes in firmness, color and other physicochemical support properties throughout the storage time and to represent shelf life depending on temperature from the evolution of these quality properties. From the experimental data, a set of models were adjusted to represent the change of each property as a function of time and temperature by using a first-order kinetics to represent the evolution of lightness (L*) and the chromatic coordinate b*, and a logistic equation to represent firmness and a*. The effect of temperature was represented by using Arrhenius equations. From the models of firmness and color, suitable equations were obtained to predict shelf life considering the relationship with the senescence stage (between 20 and 33 days). All the models were adjusted satisfactorily, obtaining regression coefficients higher than 0.95. In order to determine the predictive capacity of the proposed models, a validation experiment was carried out by storing fruits at 12 C until reaching the senescence stage. With the models, it was possible to satisfactorily predict the changes in color and firmness and it was possible to estimate the shelf life time at 12 C (28 AE 3.1 days).