2022
DOI: 10.15359/ree.27-1.14516
|View full text |Cite
|
Sign up to set email alerts
|

Modelo de red neuronal artificial para predecir resultados académicos en la asignatura Matemática II

Abstract: Objetivo. Este artículo muestra el diseño y entrenamiento de una red neuronal artificial (RNA) para predecir resultados académicos de estudiantes de Ingeniería Civil de la Universidad Nacional Intercultural Fabiola Salazar Leguía de Bagua-Perú en la asignatura de Matemática II. Método. Se utilizó la metodología CRISP-DM, para recolectar los datos se emplearon encuestas, el modelo de RNA se implementó en el software Matlab utilizando el comando nnstart y dos algoritmos de aprendizaje: Scaled Conjugate Gradient … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 25 publications
0
4
0
1
Order By: Relevance
“…The metrics and the selected algorithm indicate that the model is quite robust because it updates the weight and bias values at the culmination of each epoch, as stated by Incio et al [39]. In addition, since it combines the gradient descent method and the Gauss-Newton method, it becomes an efficient optimization tool that reduces the sum of squared errors [40].…”
Section: Neural Net Fitting Turbidity Prediction Modelmentioning
confidence: 99%
See 1 more Smart Citation
“…The metrics and the selected algorithm indicate that the model is quite robust because it updates the weight and bias values at the culmination of each epoch, as stated by Incio et al [39]. In addition, since it combines the gradient descent method and the Gauss-Newton method, it becomes an efficient optimization tool that reduces the sum of squared errors [40].…”
Section: Neural Net Fitting Turbidity Prediction Modelmentioning
confidence: 99%
“…curve (Figure 2) also displays the efficiency of the neural network model observing a good fit between predicted and experimental values, as mentioned by Noor et al [30] and Sahin et al [38], which is also explained for the upper value of R 2 , justifying the selection. The metrics and the selected algorithm indicate that the model is quite robust because it updates the weight and bias values at the culmination of each epoch, as stated by Incio et al [39]. In addition, since it combines the gradient descent method and the Gauss-Newton method, it becomes an efficient optimization tool that reduces the sum of squared errors [40].…”
Section: Neural Net Fitting Turbidity Prediction Modelmentioning
confidence: 99%
“…Una red neuronal es un modelo matemático computacional que tiene como objetivo un aprendizaje mediante experiencias, funcionando como las neuronas de un cerebro humano (Incio-Flores et al, 2023). Para Incio-Flores et al, (2023), una red neuronal está formada por: una estructura interna, determinada por los pesos o sinapsis, que tienen funciones inhibidoras o excitadoras; un sumador, que tiene como finalidad ponderar la suma de todas las entradas multiplicadas por la sinapsis; una función de activación, no línea; y un umbral de exterior. La unidad principal de una red neuronal es la neurona, dispositivo que, a partir de un conjunto de datos de entrada, puede generar una salida (Elman, 1991).…”
Section: La Inteligencia Artificial Y Las Redes Neuronalesunclassified
“…When background data is considered, it often focuses on specific academic programs (Saire, 2023;García, 2021). Furthermore, most studies predict course or year success, not overall academic performance (Puga & Torres, 2023;Incio et al, 2023;Menacho, 2017), limiting policy applications. Studies that consider data at a single point in time also face the problem of "concept drift", namely, a high risk of disconnection between the training data and new rounds of real-life data in a changing environment (Mathrani et al, 2021).…”
Section: Literature Reviewmentioning
confidence: 99%
“…Studies that consider data at a single point in time also face the problem of "concept drift", namely, a high risk of disconnection between the training data and new rounds of real-life data in a changing environment (Mathrani et al, 2021). Some studies incorporate ad hoc student surveys with small datasets (<100 observations), affecting model generalizability (Incio et al, 2023;García, 2021).…”
Section: Literature Reviewmentioning
confidence: 99%