This study used self-luminous high-speed photography to visualize quasi-detonation propagation and deflagration-to-detonation transition (DDT) in a transparent round tube equipped with repeating orifice plates. Experiments were conducted in a combustion channel consisting of a 3.16 m square channel with a 7.6 cm by 7.6 cm cross-section connected to a 1.55 m cylindrical channel filled with orifice plates. Rectangular 'fence-type' obstacles were installed on the top and bottom of the square channel with a 3.8 cm opening between them. Two sets of orifice plates with different diameters, d, representing different blockage ratios (BR) were tested (d=5.33 cm for 50% BR and 3.81 cm for 75% BR orifice plates). Stoichiometric hydrogen-oxygen mixtures at initial pressures of 4-60 kPa were ignited at one end of the combustion channel. Average propagation velocities were derived from shock-time-of-arrival measurements using pressure transducers in the square channel and high-speed video filmed through the round tube. First and foremost, I'd like to thank my supervisor, Dr. Gaby Ciccarelli, for his guidance, support and teaching over the past two years. This degree has been a wonderful opportunity and it has been a real pleasure to work on this project with him.