We investigate the secular dynamics of long-range interacting particles moving on a sphere, in the limit of an axisymmetric mean field potential. We show that this system can be described by the general kinetic equation, the inhomogeneous Balescu-Lenard equation. We use this approach to compute long-term diffusion coefficients, that are compared with direct simulations. Finally, we show how the scaling of the system's relaxation rate with the number of particles fundamentally depends on the underlying frequency profile. This clarifies why systems with a monotonic profile undergo a kinetic blocking and cannot relax as a whole under 1/N resonant effects. Because of its general form, this framework can describe the dynamics of globally coupled classical Heisenberg spins, long-range couplings in liquid crystals, or the orbital inclination evolution of stars in nearly Keplerian systems.