1986
DOI: 10.1016/0045-7825(86)90059-9
|View full text |Cite
|
Sign up to set email alerts
|

Moderate-degree tetrahedral quadrature formulas

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
68
0
3

Year Published

2004
2004
2017
2017

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 166 publications
(71 citation statements)
references
References 4 publications
0
68
0
3
Order By: Relevance
“…Numerical integration was performed using a fifth-order, 15-point volume Gauss quadrature. 47 The equations were solved iteratively using GMRES with diagonal preconditioning, 48 based on a square root scaling introduced in Ref. 49.…”
Section: B Direct-fe Methodsmentioning
confidence: 99%
“…Numerical integration was performed using a fifth-order, 15-point volume Gauss quadrature. 47 The equations were solved iteratively using GMRES with diagonal preconditioning, 48 based on a square root scaling introduced in Ref. 49.…”
Section: B Direct-fe Methodsmentioning
confidence: 99%
“…Estas reglas de integración son clásicas y fáciles de encontrar en la bibliografía, por ejemplo en [33] y posteriormente en [34]. Para aprovechar el método de colapso de Stroud en un tetraedro seguimos la siguiente regla: la arista donde se colapsa el hexaedro se hace coincidir con la arista que comparte el tetraedro con el frente de grieta, y el nodo donde se colapsan más nodos del hexaedro se hace coincidir con uno de los vértices que coinciden con el frente de la grieta.…”
Section: Integración Basada En El Método Clásico De Stroudunclassified
“…La integración de los tetraedros que contienen singularidad se realiza mediante un hexaedro colapsado de 64 puntos, siguiendo las reglas clásicas preentadas por [33][34] o mediante una regla de 42 puntos según el esquema de [25]. Solo se analizan los casos en que la solución presenta KI o KII, lo que permite estudiar el comportamiento de las reglas de integración adaptadas al extremo de grieta.…”
Section: Verificación Numéricaunclassified
“…Here, the test function space is the set of δ u's that are piecewise linear and continuous and vanish on Γ D . The integral in (3) is evaluated with a quadrature rule; we have used a 6-point formula having degree 4 precision from [7] for our quadrature in 2D and a 15-point formula having degree 5 precision from [8] for 3D. It suffices to solve (3) for the dm choices of δ u that compose the standard basis for the test function space.…”
Section: The Problem Under Considerationmentioning
confidence: 99%