Aging is characterized by autophagy impairment that contributes to age-related disease aggravation. Moreover, it was described that the hypothalamus is a critical brain area for whole-body aging development and has impact on lifespan. Neuropeptide Y (NPY) is one of the major neuropeptides present in the hypothalamus, and it has been shown that, in aged animals, the hypothalamic NPY levels decrease. Because caloric restriction (CR) delays aging, at least in part, by stimulating autophagy, and also increases hypothalamic NPY levels, we hypothesized that NPY could have a relevant role on autophagy modulation in the hypothalamus. Therefore, the aim of this study was to investigate the role of NPY on autophagy in the hypothalamus. Using both hypothalamic neuronal in vitro models and mice overexpressing NPY in the hypothalamus, we observed that NPY stimulates autophagy in the hypothalamus. Mechanistically, in rodent hypothalamic neurons, NPY increases autophagy through the activation of NPY Y 1 and Y 5 receptors, and this effect is tightly associated with the concerted activation of PI3K, MEK/ERK, and PKA signaling pathways. Modulation of hypothalamic NPY levels may be considered a potential strategy to produce protective effects against hypothalamic impairments associated with age and to delay aging.ging is associated with accumulation of specific cellular proteins within neurons, a pathologic hallmark of many neurodegenerative diseases. Because average human life expectancy has increased, but also the prevalence of cognitive decline and dementia, aging research is now focused in finding strategies that increase both lifespan and healthspan.Autophagy is a highly regulated intracellular process involved in the turnover of most cellular constituents and in the maintenance of cellular homeostasis (1, 2). It is well described that basal autophagic activity decreases with age, contributing to the accumulation of altered macromolecules (3). In addition, autophagy impairment contributes to different aspects of aging phenotype and to aggravation of age-related diseases (4).Caloric restriction (CR), the reduced intake of calories without malnutrition, extends lifespan of many organisms, from yeast to mammals, and delays the progression of age-related diseases, at least in part, by stimulating autophagy (5-8). One major neuroendocrine effect of CR is the increase of neuropeptide Y (NPY) in the hypothalamus (9-12). The hypothalamus has a key role in the control of body homeostasis, neuroendocrine outputs, and feeding behavior. Recently, it was described that this brain area is critical for the development of whole-body aging and has impact on lifespan (13,14). In the hypothalamus, NPY is involved in the regulation of different physiological functions, such as regulation of food intake, body temperature, circadian rhythms, memory processing, and cognition (15-19). These diverse actions of NPY are mediated by G protein-coupled receptor subtypes named NPY Y 1 , Y 2 , Y 4 , and/or Y 5 (20, 21), all of which have been reported to be...