Time series data from environmental monitoring stations are often analysed with machine learning methods on an individual basis, however recent advances in the machine learning field point to the advantages of incorporating multiple related time series from the same monitoring network within a ‘global’ model. This approach provides the opportunity for larger training data sets, allows information to be shared across the network, leading to greater generalisability, and can overcome issues encountered in the individual time series, such as small datasets or missing data. We present a case study involving the analysis of 165 time series from groundwater monitoring wells in the Namoi region of Australia. Analyses of the multiple time series involving a variety of different aggregations are compared and contrasted (with single time series, subsets, and all of the time series together), using variations of the multilayer perceptron (MLP), self-organizing map (SOM), long short-term memory (LSTM), and a recently developed LSTM extension (DeepAR) that incorporates autoregressive terms and handles multiple time series. The benefits, in terms of prediction performance, of these various approaches are investigated, and challenges such as differing measurement frequencies and variations in temporal patterns between the time series are discussed. We conclude with some discussion about challenges, recommendations and opportunities associated with using networks of environmental data to help inform future resource-related decision making.