The dissolution of single-walled carbon nanotubes (SWCNTs) remains a fundamental challenge, reliant on aggressive chemistry or ultrasonication and lengthy ultracentrifugation. In contrast, simple nonaqueous electrochemical reduction leads to spontaneous dissolution of individualized SWCNTs from raw, unprocessed powders. The intrinsic electrochemical stability and conductivity of these nanomaterials allow their electrochemical dissolution from a pure SWCNT cathode to form solutions of individually separate and distinct (i.e., discrete) nanotube anions with varying charge density. The integrity of the SWCNT sp² framework during the charge/discharge process is demonstrated by optical spectroscopy data. Other than a reversible change in redox/solvation state, there is no obvious chemical functionalization of the structure, suggesting an analogy to conventional atomic electrochemical dissolution. The heterogeneity of as-synthesized SWCNT samples leads to the sequential dissolution of distinct fractions over time, with fine control over the electrochemical potential. Initial preferential dissolution of defective nanotubes and carbonaceous debris provides a simple, nondestructive means to purify raw materials without recourse to the usual, damaging, competitive oxidation reactions. Neutral SWCNTs can be recovered either by electroplating at an anode or by reaction with a suitable electrophile.