Molekulare Werkzeuge können in der Wissenschaft unter anderem dazu verwendet werden, biochemische Prozesse gezielt zu untersuchen, um sie somit besser zu verstehen. Dabei handelt es sich zum Beispiel, um kleine chemische Moleküle, die gezielt für ihr Anwendungsgebiet konzipiert worden sind. Mit Ihnen lassen sich z.B. Interaktionen zwischen (Makro-)Molekülen regulieren, chemische Gleichgewichte lokal verändern oder auch Botenstoffe zielgerichtet freisetzen. Die Effekte dieser temporären Einwirkung auf verschiedenste biologische Systeme können hilfreiche Erkenntnisse struktureller, funktioneller oder systematischer Art für die entsprechenden Forschungsgebiete liefern. Um die interdisziplinären Problemstellungen zielgerichtet mit den entsprechend zugeschnittenen Werkzeugen zu adressieren, ist es dabei jedoch absolut notwendig, dass ein umfassendes und über die Grenzen der jeweiligen Fachgebiete hinaus gehendes Verständnis der jeweiligen Fragestellungen entwickelt wird. Viele der bisher bekannten Werkzeuge benötigen für ihren Einsatz bis heute noch relativ harsche Reaktionsbedingungen, haben ein eingeschränktes Anwendungsfeld oder lassen sich nicht ausreichend Zeit- & Ortsaufgelöst „aktivieren“. Die Möglichkeit Licht als externes Trigger-Signal zu verwenden, um die entsprechenden molekularen Werkzeuge zu aktivieren (oder auch zu deaktivieren), überwindet genau diese Defizite und bringt neben der hohen zeitlichen und räumlichen Auflösung noch viele weitere Vorteile mit sich. Im Rahmen meiner Doktorarbeit ist es mir gelungen gemeinsam mit meinen Kooperationspartnern neue lichtaktivierbare molekulare Werkzeuge von Grund auf zu designen, zu synthetisieren, sie auf ihre photochemischen Eigenschaften zu untersuchen und sie anzuwenden. Durch die interdisziplinäre Zusammenarbeit mit Doktoranden aus der Organischen, Theoretischen und Physikalischen Chemie, konnte ein umfassendes Bild dieser neuen Substanzklassen aufgezeigt werden. Die verschiedenen Arten lichtaktivierbarer Werkzeuge sollen im Verlauf dieser Arbeit genauer herausgearbeitet werden. Generell kann man in drei grundlegenden Klassen von lichtaktivierbaren Werkzeugen unterscheiden: 1. irreversibel photolabile Schutzgruppen, 2. photoaktivierbare Label und 3. reversibel lichtschaltbare Photoschalter. Auf dem Gebiet der photolabilen Schutzgruppen, auch photoaktivierbare Schutzgruppen oder Photocages genannt, ist es uns gelungen eine neue Spezies von Molekülen zu identifizieren, die dazu in der Lage sind, nach photochemischer Anregung eine spezifische Bindung innerhalb ihres molekularen Gerüsts zu spalten. Möglich gemacht wurde dies, indem wir den sog. „uncaging Prozess ganz neu gedacht“ haben und mit der Unterstützung von Theorie und Spektroskopie unsere Ergebnisse in einer Struktur-Aktivitäts-Beziehungs-Studie (SAR) festhalten konnten. Aus einer Substanzbibliothek von diversen theoretisch berechneten Kandidaten, wurden die vielversprechendsten Verbindungen anschließend synthetisiert und photochemisch charakterisiert. Nach initialen Untersuchungen und den daraus hervorgehenden Erkenntnissen, wurden weitere molekulare Struktur auf die Optimierungen der photochemischen Eigenschaften hin theoretisch berechnet und anschließend im Labor realisiert. Daraus resultierend entwickelten wir einen Photocage, der mit einer hohen Quantenausbeute mit Licht von über 450 nm photolysierbar ist und ebenfalls dazu in der Lage ist Neurotransmitter wie z.B. Glutamat zielgerichtet und lichtaktiviert freizusetzen. Eine weitere Struktur-Aktivitäts-Beziehungs-Studie wurde im Rahmen dieser Arbeit mit dem Isatin-Gerüst als potentiell neue photolabile Schutzgruppe durchgeführt. Ebenfalls konnten in einer dritten Studie auf dem Gebiet der photolabilen Schutzgruppen Untersuchungen am Coumarin-Grundgerüst zeigen, dass eine systematische Einschränkung der Relaxationspfade im Molekül eine Verbesserung der photochemischen Eigenschaften mit sich bringen kann. Photoaktivierbare Label werden in den verschiedensten Bereichen der Wissenschaft angewendet. Meist erlauben jedoch die chemischen Moleküle nur eine begrenzte „Beobachtungszeit“ der biochemischen Prozesse aufgrund der effizienten und damit schnellen Relaxationspfade zurück in den Grundzustand. Zu Beginn der durchgeführten Untersuchungen, bestand unsere Idee darin, die selektive Prä-IR-Anregung mit Hilfe eines UV/vis-Pulses (entsprechend der VIPER-Spektrokopie) in ein langlebiges Triplett-Signal eines geeigneten Chromophors zu überführen, welches anschließend für die Beobachtung vergleichsweise lang-lebiger biochemischer Prozesse verwendet werden könnte. Aus dieser Idee heraus entwickelten wir einen Chromophor, der neben einer Absorption im sichtbaren Bereich des elektromagnetischen Spektrums, zusätzlich eine IR-adressierbare funktionelle Gruppe, sowie die Eigenschaft, ein effizientes Inter-System-Crossing (ISC) nach photochemischer Anregung durchzuführen, besaß. Zu unserem Erstaunen zeigte dieses Derivat jedoch nach erfolgreicher Synthese nicht das erwartete Verhalten. Ein weiteres Beispiel für die hochgradige Komplexität der Photochemie.