The article extended the idea of active vibration reduction of beams with symmetric modes to beams with asymmetric modes. In the case of symmetric modes, the symmetric PZT (s-PZT) was used, and the optimization of the problem led to the location of the s-PZT centre at the point with the greatest beam curvature. In the latter case, the asymmetric modes that occur due to the addition of the point mass cause an asymmetric distribution of the bending moment and transversal displacement of a beam. In this case, the optimal approach to the active vibration reduction requires both new asymmetric PZT (a-PZT) and its new particular distribution on the beam. It has been mathematically determined that the a-PZT asymmetry point (a-point), ought to be placed at the point of maximum beam bending moment. The a-PZT asymmetry was found mathematically by minimizing the amplitude of the vibrations. As a result, it was possible to formulate the criterion of the maximum bending moment of the beam. The numerical calculations confirmed theoretical considerations. So, it was shown that in the case of asymmetric vibrations, the a-PZTs reduced vibrations more efficiently than the s-PZT.