The synthesis, crystal structures, and magnetic properties of a new two-dimensional (2D) Hofmann-like series, FeII(L)2[AgI(CN)2]2 (L = 3-cyano-4-methylpyridine (1), allyl isonicotinate (2), phenyl-isonicotinate (3), and benzyl nicotinate (4)) were studied. These compounds have a 2D sheet structure because of their strongly determinate self-assembly process. An octahedral FeII ion is coordinated with the nitrogen atoms of[AgI(CN)2 linear units at equatorial positions and monodentate pyridine derivatives at the axial position. The layers construct a parallel stacking array. Compounds 1–3 show pairs of layers constructed by intermetallic Ag···Ag interactions. Compound 4 shows a mono-layer structure. The substituent bulk of the ligands affects the interlayer space. Compounds 1–4 undergo a 100% spin transition. However, compound 1, incorporating a smaller group, has a relatively lower critical temperature (Tc = 182 K (1), Tc = 221 K (2), Tc = 227 (3) and Tc1 = 236 K, Tc2 = 215 K (4)). We investigated the correlations between our systematic crystal design, substituent size, and the spin crossover profiles.