Polymer blends of polyamide 6 (PA6) and phenol novolac (PN) were prepared by melt mixing. Up to 30 wt% of high molecular weight PN (HPN) or low molecular weight PN (LPN) was blended with PA6, and the physical and mechanical properties were examined. The water absorption of PA6 is inhibited by PN, and this effect is independent of the molecular weight of PN. PA6 and PN are miscible, and their blends show a single glass transition temperature ( T g) that is higher than that of PA6. HPN can enhance the T g of PA6 more efficiently than LPN because of its high T g. PA6 and the PA6/LPN blend after immersion in water had lower-than-room-temperature T gs transitioning to rubbery states. In contrast, the PA6/HPN blend after immersion in water had a higher-than-room-temperature T g. The PA6/HPN blend in water has excellent mechanical properties in its glassy state compared to those of PA6 in the dry state. Thus, the PA6/HPN blend can be used to broaden the applications of PA6, especially in humid conditions.