To improve the mechanical properties of lignin-filled poly(L-lactic) composites, three silane coupling agents, 3-aminopropyltriethoxysilane (KH550), γ-glycidoxypropyltrimethoxysilane (KH560), and g-methyacryloxypropyltrimethoxysilane (KH570), were treated systematically with different solvents to modify the interfacial connections. The treatment of lignin with 2 wt.% aqueous KH550 solution was proved to be the most successful. Chemical bonding between the filler and the matrix was formed, according to the FTIR spectra. Furthermore, scanning electron microscope images showed that such treated lignin particles dispersed well in the composites. The tensile strength and Young's modulus of the composite improved significantly from 55.1 and 1589 MPa to 67.0 and 1641 MPa, respectively, with 5 wt.% treated lignin addition. Although its elongation at break decreased from 20.3 to 12.4% after 5 wt.% of the treated lignin was added, it was still better than that of poly(L-lactic acid) without any additive (10.3%).