Actinobacteria are gram-positive filamentous bacteria which contains some of the most deadly human pathogens (Mycobacterium tuberculosis, M. leprae, Corynebacterium diphtheriae, Nocardia farcinica), plant pathogens (Streptomyces scabies, Leifsonia xyli) along with organisms that produces antibiotic (Streptomycetes, Amycolatopsis, Salinospora). Interestingly, these bacteria are equipped with an extraordinary capability of producing antibiotics and other metabolites which have medicinal properties. With the advent of inexpensive genome sequencing techniques and their clinical importance, many genomes of Actinobacteria have been successfully sequenced. These days, with the constant increasing number of drug-resistant bacteria, the urgent need for discovering new antibiotics has emerged as a major scientific challenge. And, unfortunately the traditional method of screening bacterial strains for the production of antibiotics has decreased leading to a paradigm shift in the planning and execution of discovery of novel biosynthetic gene clusters via genome mining process. The entire focus has shifted to the evaluation of genetic capacity of organisms for metabolite production and activation of cryptic gene clusters. This has been made possible only due to the availability of genome sequencing and has been augmented by genomic studies and new biotechnological approaches. Through this article, we present the analysis of the genomes of species belonging to the genus Amycolatopsis, sequenced till date with a focus on completely sequenced genomes and their application for further studies.