Anodes, which provide the carbon required for aluminum production, are made from dry aggregates (petroleum coke, rejected anodes, and butts) with coal tar pitch as the binder. Good quality anodes require good interaction between coke and pitch, and this relies on good wetting properties. The objectives of this work are to analyze the wetting properties of four different cokes with and without modification using an additive and to test the effect of the modified coke on anode properties. A FTIR study was done to identify functional groups in non-modified and modified coke samples since they play an important role on coke-pitch interactions. The wetting tests were done using the sessile-drop method to measure the contact angle between coke and pitch. The results showed that the additive improved the wettability of all four cokes by pitch. The least wettable coke was chosen to produce anodes. For anode production, the entire dry aggregate is modified. The additive was mixed with the dry aggregate using two different approaches (one day earlier and 5 min before mixing). The anodes were characterized before and after baking. The early treatment with the additive was found to be better for the modification of dry aggregate.