The aim of this study was to evaluate the effect of corona treatment and rubber tire particle substitution proportion on the properties of particleboard. Treatments consisted of replacing 10%, 20%, and 30% Pinus oocarpa with rubber tire particles, as well as a treatment without added rubber. Rubber particles were submitted to corona treatment. Panels were produced with a nominal density of 650 kg.m−3, a 7% urea-formaldehyde adhesive, a temperature of 200 °C, a specific pressure of 3.92 MPa, and pressing time of 8 min. Panels were evaluated to determine their physical properties, including water absorption and thickness swelling after 2 h and 24 h of water immersion (TS2h and TS24h), and for mechanical properties including internal bond strength (IB), modulus of rupture (MOR), and modulus of elasticity (MOE) in static bending. Using a 30% rubber tire particle substitution proportion significantly improved the TS24h and non-return rate in thickness (NRRT) of the panels. However, rubber addition significantly decreased the mechanical properties, and only panels with up to 10% rubber met the minimum requirements of the EN 312 (2003) standard for MOR, MOE, and IB in panels for internal use (including furniture).