This work investigates the radiation resistance of a structural material based on modified titanium hydride and a Portland cement in a flux of neutron and γ-radiation. An assessment of the geometric and physicomechanical properties is given, along with the surface structure of irradiated cement composites, and the phase composition of the main hydrosilicates of the hydrated cement matrix during its γ-irradiation. It is shown that the use of a shot of titanium hydride increases the radiation resistance of radiation shielding based on a cement matrix, in comparison with the unmodified shot. A composite based on a modified shot of titanium hydride retains its basic properties after γ-irradiation, at an absorbed dose of up to 10 MGy. At an absorbed dose of 2 MGy in the Portland cement matrix of a composite based on a modified shot of titanium hydride, the formation of suolunite hydrosilicates occurs. It was established using X-ray fluorescence that, in the titanium hydride, a redistribution of the electron density occurs at an absorbed dose of γ radiation of 5 MGy, caused by structural phase changes due to the ongoing dehydrogenation processes.