ABSTRACT:The aim of this research was to investigate the behaviors of epoxy resin blended with epoxidized natural rubber (ENR). ENRs were prepared via in situ epoxidation method so that the obtained ENRs contained epoxide groups 25, 40, 50, 60, 70, and 80 mol %. The amounts of ENRs in the blends were 2, 5, 7, and 10 parts per hundred of epoxy resin (phr). From the results, it was found that the impact strength of epoxy resin can be improved by blending with ENRs. Tensile strength and Young's modulus were found to be decreased with an increasing amount of epoxide groups in ENR and also with an increasing amount of ENR in the blends. Meanwhile, percent elongation at break slightly increased when ENR content was not over 5 phr. In addition, flexural strength and flexural modulus of the blends were mostly lower than the epoxy resin. Scanning electron microscope micrograph of fracture surface suggested that the toughening of epoxy resin was induced by the presence of ENR globular nodules attached to the epoxy matrix. TGA and DSC analysis revealed that thermal decomposition temperature and glass transition temperature of the samples were slightly different.