International Conference on Cloud Computing, Performance Computing, and Deep Learning (CCPCDL 2022) 2022
DOI: 10.1117/12.2641066
|View full text |Cite
|
Sign up to set email alerts
|

Modified BERT-based end-to-end Chinese named entity recognition model

Abstract: In this paper, we present an end-to-end model based on modified Bidirectional Encoder Representations from Transformers (BERT) for Chinese named entity recognition (NER) in natural language processing. The model is composed of the SpanBERT layer and the Conditional Random Field (CRF) layer. By using combination, the model can express the input characters in the better form of "word embeddings", eliminating the steps of feature engineering or data processing in conventional approaches, and can be widely applied… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?