Mild traumatic brain injury (mTBI) is a clinically highly heterogeneous neurological disorder, none of the existing animal models can replicate the entire sequelae. This study aimed to develop a modified closed head injury (CHI) model of repeated mTBI (rmTBI) for investigating Ca2+ fluctuations of the affected neural network, the alternations of electrophysiology, and behavioral dysfunctions. The transcranial Ca2+ study protocol includes AAV‐GCaMP6s infection in the right motor cortex, thinned‐skull preparation, and two‐photon laser scanning microscopy (TPLSM) imaging. The CHI rmTBI model is fabricated using the thinned‐skull site and applying 2.0 atm fluid percussion with 48‐h interval. The neurological dysfunction, minor motor performance, evident mood, spatial working, and reference deficits we found in this study mimic the clinically relevant syndromes after mTBI. Besides, our study revealed that there was a trend of transition from Ca2+ singlepeak to multipeak and plateau, and the total Ca2+ activities of multipeaks and plateaus (p < .001 vs. pre‐rmTBI value) were significantly increased in ipsilateral layer 2/3 motor neurons after rm TBI. In parallel, there is a low‐frequency power shift from delta to theta band (p < .01 vs. control) in the ipsilateral layer 2/3 of motor cortex of the rmTBI mice, and the overall firing rates significantly increased (p < .01 vs. control). Moreover, rmTBI causes slight cortical and hippocampal neuron damage and possibly induces neurogenesis in the dentate gyrus (DG). The alternations of Ca2+ and electrophysiological characteristics in layer 2/3 neuronal network, histopathological changes, and possible neurogenesis may play concertedly and partially contribute to the functional outcome post‐rmTBI.