Abstract-Absolute adaptive current statistical (AACS) model and modified strong tracking unscented filter (MSTUF) are proposed for maneuvering target tracking (MTT) under nonlinear measurement in this paper. The key point of the AACS model is to associate the instantaneous acceleration variance with some elements of state covariance matrix by constructing acceleration increment models of the acceleration limit and acceleration mean in the CS model, while the maneuvering frequency can adjust itself according to the change of the measurement residual. MSTUF is proposed for high maneuver tracking under nonlinear measurement by incorporating the modified strong tracking filter (STF) into the unscented filter (UF). Since the state covariance, process noise covariance and maneuvering frequency can adjust themselves jointly according to the residual, the proposed algorithm, called the AACS-MSTUF, has a good performance on both maneuver and non-maneuver. Simulation results indicate that the overall performance of the proposed algorithm is better than the interacting multiple-model unscented filter (IMM-UF), UF and original strong tracking unscented filter (STUF) based on the CS model (CS-STUF) when considering tracking accuracy, stability, convergence and computational complexity.