Summary
A novel collocation method based on Genocchi wavelet is presented for the numerical solution of fractional differential equations and time‐fractional partial differential equations with delay. In this work, to achieve the approximate solution with height accuracy, we employed the operational matrix of integer derivative and the pseudo‐operational matrix of fractional derivative in Caputo sense. Also, based on Genocchi function properties, we presented delay and pantograph operational matrices of Genocchi wavelet functions (GWFs). Due to operational and pseudo‐operational matrices, the equations under this study can be turned into nonlinear algebraic equations with the unknown GWF coefficients. For illustrating the upper bound of error for the proposed method, we estimate the error in the sense of Sobolev space. In addition, to demonstrate the efficacy of the pseudo‐operational matrix of fractional derivative, we investigate the upper bound of error for the mentioned matrix. Finally, the algorithm based on the proposed approach is implemented for some numerical experiments to confirm accuracy and applicability.