Vienna rectifier is a typical three-level rectifier with complicated operating constraints. Also, the constraints pose a challenge for designing controllers with good dynamic performance. As predictive control is good at dealing with constraints, an optimal switching sequence model predictive control (OSS-MPC) strategy for the three-phase Vienna rectifier is proposed. A proportional-integral controller is designed to regulate the dc-link voltage. Also, an improved OSS-MPC method is utilised to control the input currents. Compared to the conventional finite control set model predictive control, it has the extra advantages of improved steady-state performance, fixed switching frequency, and elimination of weight factors. Simulation and experimental results verify the correctness and effectiveness of the proposed control scheme.