Conversion of electromagnetic energy into magnetohydrodynamic energy occurs when the electric conductivity changes from negligible to finite values. This process is relevant during the epoch of reheating of the early Universe at the end of inflation and before the emergence of the radiation-dominated era. We find that conversion into kinetic and thermal energies is primarily the result of electric energy dissipation and that the magnetic energy plays only a secondary role in this process. This means that, since electric energy dominates over magnetic energy during inflation and reheating, significant amounts of electric energy can be converted into magnetohydrodynamic energy when conductivity emerges early enough, before the relevant length scales become stable.