In the present study, the Welding Institute of Canada (WIC) restraint test was used to simulate the restraint conditions of full-scale girth welds on energy pipelines to ascertain the influence of welding process parameters on welding stresses. Finite element models are developed, and validated with neutron diffraction measurements, to evaluate the welding stresses for under-matched, matched and over-matched welds. The effects of heat input, wall thickness and variable restraint lengths of WIC sample are systematically investigated. As a practical outcome, this work can help in selection of the appropriate restraint length for WIC tests to simulate the specified stress conditions in the pipeline, and, ultimately, reduce the risk of Hydrogen Assisted Cold Cracking (HACC) in high strength low alloy. This paper is part of a Themed Issue on Measurement, modelling and mitigation of residual stress.