This paper proposes a heuristic method based on ant colony optimization to determine the suboptimal allocation of dynamic multi-attribute dispatching rules to maximize job shop system performance (four measures were analyzed: mean flow time, max flow time, mean tardiness, and max tardiness). In order to assure high adequacy of the job shop system representation, modeling is carried out using discrete-event simulation. The proposed methodology constitutes a framework of integration of simulation and heuristic optimization. Simulation is used for evaluation of the local fitness function for ants. A case study is used in this paper to illustrate how performance of a job shop production system could be affected by dynamic multiattribute dispatching rule assignment.