Collimated F-18 FDG SPECT imaging has been shown to be an acceptable alternative to F-18 FDG PET imaging for evaluating injured but viable myocardium. Ultra-energy (UHE) imaging is usually performed in simultaneous F-18 FDG/Tc-99m MIBI studies. The main limitations of this technique are degradation of the Tc-99m MIBI images due to F-18 downscatter to the Tc-99m window, and loss of resolution in Tc-99m images caused by using a UHE rather than a low-energy collimator. The quality of F-18 images has not been addressed. In our clinical and phantom studies we have found that F-18 images are inferior to simultaneously acquired Tc-99m MIBI images. This paper compares two correction methods for F-18 FDG images in a realistic cardiac phantom study. One approach is subtractive scatter correction, which employs a third 410 keV energy window image to estimate scatter. The other approach is based on restoration. The phantom acquisition was performed with 7.2 MBq of F-18 and 22.2 MBq of Tc-99m injected into the left ventricular (LV) wall. Three inserts, 3 cm, 2 cm, and 1 cm in diameter, were placed in the LV wall to simulate infarcts. Circumferential profiles were drawn from three successive short-axis slices and compared with true phantom data. The differences were calculated as root-mean-square error (rmse). Scatter correction improved rmse only 4.5 +/- 0.3%, while restoration improved rmse 16.1 +/- 0.4%, when compared with raw data. The same differences, measured as rmse, were 9.5 +/- 0.5, 6.8 +/- 0.4, and 5.1 +/- 0.5 for raw, scatter corrected, and restored F-18 data, respectively, when compared with Tc-99m window 140 keV data. The amount of noise, measured as root-mean-square % (rms%) was 5.3 +/- 0.5% for the Tc-99m image, 4.9 +/- 0.7% for the F-18 restored image, 6.2 +/- 0.6% for the raw F-18 image, and 6.5 +/- 0.9% for the scatter corrected F-18 image. The contrast measured for 2 cm and 3 cm inserts was 0.17 +/- 0.07 and 0.26 +/- 0.06 for F-18 raw data, 0.19 +/- 0.08 and 0.29 +/- 0.06 for the scatter corrected F-18 image, and 0.28 +/- 0.06 and 0.43 +/- 0.07 for the restored F-18 image. The contrast was 0.20 +/- 0.07 and 0.46 +/- 0.05 for the Tc-99m 140 keV window image. The restoration approach provided F-18 images of better contrast and detectibility than uncorrected or scatter corrected F-18 images. Restored F-18 images match better with the simultaneously acquired Tc-99m images.