Chemical sensors based on a polymer coated quartz crystal microbalance (QCM) generally present poor molecular selectivity for compounds that contain similar functional groups and possess the same chemical properties. This paper shows for the first time that the selectivity and sensitivity of a poly(methyl methacrylate) (PMMA) based QCM sensor can be significantly enhanced for aromatic hydrocarbons by incorporating a plasticizer into the polymer film. The sensor was fabricated by spin coating PMMA onto a quartz crystal, and the influence of plasticizer type and amount on the response was evaluated. It was shown that the hydrocarbon sensitivity of plasticizer-free PMMA is negligible, while the sensitivity of plasticized PMMA was similar to or in some cases greater relative to highly responsive rubbery polymers such as polyisobutylene (PIB). Detection limits of 4.0, 1.5, 0.4, 0.6, and 0.1 ppm were obtained on a PMMA film containing 25% w/w di(2-ethylhexyl) phthalate for benzene, toluene, ethylbenzene, p-xylene, and naphthalene, respectively. We found that at low plasticizer levels (∼10% w/w) the PMMA film was more sensitive toward ethylbenzene and p-xylene over naphthalene when compared to a PIB film under similar measurement conditions. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) measurements were performed to understand the sensing mechanism, and these studies confirmed a higher hydrocarbon uptake by PMMA in the presence of plasticizer. Positron annihilation lifetime spectroscopy (PALS) studies detected variations in the free volume properties of the polymer films as a function of plasticizer content. The accessible free volume as measured by PALS was significantly less in the PMMA films compared to the PIB, and this result correlates favorably with differences in the QCM response pattern. The QCM results have been rationalized in terms of free volume theory which is responsible for the higher hydrocarbon diffusion/sorption with increased plasticizer content.